

Economics of Behavioral Finance Lecture 3

Security Market Line

• CAPM predicts a linear relationship between a stock's Beta and its excess return.

$$E[r_i] - r_f = \beta_i \big(E[r_m] - r_f \big)$$

- Practically, testing CAPM empirically = testing whether the equation holds
- The focus is usually on whether there is abnormal excess return α_i :

$$E[r_i] - r_f = \alpha_i + \beta_i \big(E[r_m] - r_f \big)$$

• We will first look at this graphically

The relation between beta and mean excess return ME-sorted portfolios, 1926-2006

Each dot represents a group of stocks with similar market values.

Stocks with smaller market value have higher Beta

Positive Alpha

- In this example, we see that stocks with smaller market value ("small-cap") have returns higher than the predictions of CAPM
 - Alpha is positive
- In general, look if positive alpha is associated with stocks of a particular characteristics

The bars represent average returns

Sort stocks by: **B/M:** Book value divided by market value

C/P: Cash-flow per share divided by price

E/P: Earnings per share divided by price

Source: Chan, Hamao and Lakonishok. 1991. "Fundamentals and Stock Returns in Japan", Journal of Finance

Positive Alpha

 Low-market-value stocks ("small-cap"), high book-to-market stocks ("value stocks"), high earnings yield stocks and high cash-flow yield stocks are outperforming CAPM's prediction

Testing Alpha

- Finance papers in this area typically have one of following objectives in mind
 - 1. Argue that there are risk factors not captured by CAPM
 - Investors demand higher return from risker investment
 - 2. Argue that there are profitable trading strategies that investors can exploit
- Ideological difference. Practical execution is very similar
- Testing the existence of abnormal return involves three parts
 - Data
 - Rule to test
 - Method of testing

Financial Data (for academic research)

- Yahoo! Finance
 - finance.yahoo.com hk.finance.yahoo.com
 - Easy source for historical stock price
 - Have to download data for each stock separately
- Thomson Reuters' Datastream
 - Must be accessed through dedicated computers in university library
 - Broad range of global financial data
 - Notoriously inconvenient-to-use Excel interface

Financial Data (for academic research)

- Wharton Research Data Service (WRDS)
 - wrds.wharton.upenn.edu
 - Centralized online source for multiple datasets
 - Institutional subscription

Major Financial Datasets Available on WRDS

- Center for Research in Security Prices (CRSP)
 - Covers all three major U.S. stock exchange (NYSE, AMEX and NASDAQ)
 - Comprehensive daily stock price data dating back to 1970s
 - High, low, closing, volume, dividend and split
 - Survival Bias Free
- Standard & Poor's Compustat
 - Price data (that basically no one uses)
 - Company information and Fundamentals
 - Book value, sales, rental commitments, phone number...
- CRSP/Compustat merged dataset is the gold standard in finance research

Major Financial Datasets Available on WRDS

- Thomson Reuters' I/B/E/S
 - Analyst forecast of company earnings
- Our class account for WRDS
 - Username: econ4470
 - Password: CUHK_elb_403

Method of Testing

Notice that the linear relationship predicted by CAPM fits OLS regression naturally

$$E[r_i] - r_f = \alpha_i + \beta_i (E[r_m] - r_f) + \epsilon_i$$

 We can test if the aforementioned factors indeed have a statisticallysignificant relationship with higher excess return by adding them to the OLS regression. E.g.:

$$E[r_i] - r_f = \alpha_i + \beta_i (E[r_m] - r_f) + \gamma_i SIZE + \epsilon_i$$

- What are some potential statistical issues here?
- Also, perhaps a bit counter-intuitive, earlier studies tend not to use $E[r_m] r_f$ as the independent variable
 - Remember that $\beta_i = Cov(r_m, r_i)/(\sigma_m^2)$
 - So it is valid to calculate β_i first and use it as an independent variable
 - Expect the estimated coefficient of β_i to be positive at least

Fama-French (1992)

 \mathbf{E}/\mathbf{P} Test whether β , market β ln(ME) $\ln(BE/ME)$ $\ln(A/ME)$ E(+)/P $\ln(A/BE)$ Dummy equity, book-to-market 0.15(0.46)ratio, leverage and -0.15earnings-to-price ratio (-2.58)-0.37explain excess return -0.17(-1.21)(-3.41)0.50(5.71)The numbers reported: 0.50-0.57(5.69)(-5.34)estimated effect (1 = 1%)0.574.72on individual excess return (2.28)(4.57)-0.110.35(T-stat) (-1.99)(4.44)-0.110.35-0.50(-2.06)(4.32)(-4.56)Strong effects for ME, BM--0.160.062.99(-3.06)(0.38)(3.04)ratio and lerverage, little -0.130.33-0.140.87 effect for β and EP-ratio (-2.47)(4.46)(-0.90)(1.23)-0.130.32-0.46-0.081.15(-2.47)(4.28)(-4.45)(-0.56)(1.57)

Source: Fama, F. Eugene and Kenneth R. French. 1992. "The Cross-Section of Expected Stock Returns", Journal of Finance

Fama-French (1993)

- It is important to note that small-cap stocks and value stocks are having abnormal excess return under CAPM, which is a very simple model
- A more sophisticated model perhaps?
- Idea: Value stocks and small-cap stocks are each exposed to common factors not shared by growth, large-cap stocks
- From data we can construct indexes that represent these factors

Fama-French Three-Factor Model

• U.S. stocks—NYSE, AMEX and NASDAQ.

• FF Model

 $E[r_i] - r_f = \alpha_i + \beta_i (E[r_m] - r_f) + s_i SMB + h_i HML$

• SMB: Small-Minus-Big

• HML: High-Minus-Low

Fama-French Three-Factor Model

 Group stocks according to their market value and book-to-market value

	Low BE/ME	Medium BE/ME	High BE/ME
Small ME	S/L	S/M	S/H
Big ME	B/L	B/M	B/H

- SMB is average of top three minus bottom three
- HML is average of right two minus left two
- Up-to-date SMB and HML data can be downloaded from Kenneth French's website.

How well does FF does?

- Sort stocks into 25 portfolios by size and B/M ratio to illustrate the importance of the factors
- Standard CAPM—Big Alphas

Small	- 0.22	0.15	0.30	0.42	0.54
2	- 0.18	0.17	0.36	0.39	0.53
3	- 0.16	0.15	0.23	0.39	0.50
4	- 0.05	-0.14	0.12	0.35	0.57
Big	- 0.04	- 0.07	- 0.07	0.20	0.21

• FF—Insignificant Alphas

Small	- 0.34	- 0.12	- 0.05	0.01	0.00
2	- 0.11	-0.01	0.08	0.03	0.02
3	- 0.11	0.04	- 0.04	0.05	0.05
4	0.09	+0.22	-0.08	0.03	0.13
Big	0.21	- 0.05	0.13	- 0.05	- 0.16

Source: Fama and French. 1993. "Common Risk Factors in the Returns on Stocks and Bonds", *Journal of Financial Economics*

So FF Works Great...

- But what do the SMB and HML factors actually represent?
 - Efficient-market believers: SMB and HML represent risks
 - Inefficient-market believers: represent mistakes made by investors
- Hard to quantify what risks the factors represent
 - Whatever risks they are, they should show up in form of lower return at some periods of time

Lakonishok et al 1994 JF

- Year-by-year returns, value minus glamour
- Value stocks: top 30% stock based on cash-flow-to-price and bottom 30% growth-in-sales
- Glamour stocks: bottom 30% based on C/P and top 30% based on G/S
- How often do glamour stocks outperform value ones?

R – Recession **D** – Market declined in nominal terms

Source: Lakonishok et al. 1994. "Contrarian Investment, Extrapolation, and Risk", *Journal of Finance*.

Lakonishok et al 1994 JF

- What about B/M and E/P?
 - Neither is significant when regressed with C/P and G/S

R – Recession **D** – Market declined in nominal terms

Source: Lakonishok et al. 1994. "Contrarian Investment, Extrapolation, and Risk", *Journal of Finance*.

Daniel and Titman 1997 JF

- If the factors represent risks, we should see higher return for assets that are more correlated with the factors
- This should be true even within each size-B/M-sorted portfolio
- Sort stocks based on B/M, size and correlation with the HML factor
- 1 = 1% average excess return

Char	Port	Factor Loading Portfolio								
BM	SZ	1	2	3	4	5				
1	1	0.202	0.833	0.902	0.731	0.504				
1	2	0.711	0.607	0.776	0.872	0.710				
1	3	0.148	0.287	0.396	0.400	0.830				
2	1	1.036	0.964	1.014	1.162	0.862				
2	2	0.847	0.957	0.997	0.873	0.724				
2	3	0.645	0.497	0.615	0.572	0.718				
3	1	1.211	1.112	1.174	1.265	0.994				
3	2	1.122	1.166	1.168	1.080	0.955				
3	3	0.736	0.933	0.571	0.843	0.961				
Aver	age	0.740	0.817	0.846	0.866	0.806				

Source: Daniel and Titman. 1997. "Evidence on the Characteristics of Cross Sectional Variation in Stock Returns", *Journal of Finance*.

Summary

• There is no evidence that FF factors represent systemic risks

• Baseline: Fama-French is an *empirical model*.

Stock Return Anomalies (relative to CAPM)

- Value Effect
 - Stocks with high book-to-market ratios ("value" stocks) have higher returns than low B/M ("growth") stocks.
- Size Effect
 - Stocks with low market value ("small" stocks) have a higher return than large stocks.

Stock Return Anomalies (relative to CAPM)

- Momentum
 - Stocks that have done well over 3 months to 1 year ("momentum" stocks) have high subsequent returns.
- Reversal
 - Stocks that have done well the past 1-4 years earn low returns.

Method of Testing

- Portfolio Formation. For each period,
 - 1. Form a portfolio based on a trading rule
 - 2. Calculate the portfolio's excess return
 - 3. Compare this portfolio excess return to some benchmark
 - For long portfolios, benchmark is usually a market performance measure, e.g. S&P500 excess return
 - Example: Long the top 10% stock
 - A positive estimated effect means the portfolio performs better than market, but if the market is doing very poorly, the overall return might still be negative
 - For market-neutral portfolio (\$ in long + \$ in short = 0), benchmark is 0%
 - Example: Long the top 10% stock than has gained the most value, short the bottom 10%
 - A positive estimated effect represents "money made out of thin air"

Method of Testing

 Suppose we discovered a rule based on some stock data. Can we just compare the portfolio to the benchmark using the same data?

Momentum and Reversal

Portfolio based on	t	Monthly Return	Cumulative Return	t	Monthly Return	Cumulative Return	t	Monthly Return	Cumulative Return
 Buying stocks with the 	1	-0.0025 (-0.59)	-0.0025 (-0.59)	13	-0.0036 (-1.12)	0.0915 (3.35)	25	- 0.0035 (- 1.36)	0.0521 (1.41)
highest return	2	0.0124	0.0099	14	-0.0039	0.0876	26	-0.0030	0.0492
in the nast 6		(3.29)	(1.37)		(-1.34)	(3.07)		(-1.14)	(1.22)
in the past o	3	0.0116	0.0216	15	-0.0034	0.0842	27	-0.0024	0.0467
months		(3.18)	(2.20)		(-1.21)	(2.89)		(-0.98)	(1.10)
- Short-selling	4	0.0110	0.0326	16	-0.0038	0.0804	28	-0.0032	0.0435
stocks with the		(3.19)	(2.67)		(-1.41)	(2.76)		(-1.33)	(0.98)
	5	0.0093	0.0419	17	-0.0047	0.0757	29	-0.0032	0.0403
lowest return		(2.82)	(2.79)		(-1.74)	(2.70)		(-1.38)	(0.87)
	6	0.0091	0.0510	18	-0.0056	0.0701	30	-0.0030	0.0373
		(2.94)	(2.92)		(-2.19)	(2.68)		(-1.31)	(0.77)
	7	0.0134	0.0644	19	-0.0026	0.0675	31	-0.0001	0.0372
		(4.98)	(3.32)		(-1.14)	(2.75)		(-0.06)	(0.74)
	8	0.0115	0.0759	20	-0.0032	0.0642	32	0.0008	0.0380
		(4.16)	(3.60)		(-1.35)	(2.73)		(0.41)	(0.73)
	9	0.0085	0.0844	21	-0.0032	0.0611	33	0.0013	0.0394
		(3.07)	(3.73)		(-1.32)	(2.55)		(0.62)	(0.73)
	10	0.0048	0.0892	22	-0.0034	0.0577	34	0.0008	0.0402
		(1.69)	(3.74)		(-1.39)	(2.21)		(0.36)	(0.71)
	11	0.0045	0.0938	23	-0.0011	0.0566	35	0.0010	0.0412
		(1.55)	(3.77)		(-0.45)	(1.93)		(0.45)	(0.71)
	12	0.0013	0.0951	24	-0.0010	0.0556	36	-0.0005	0.0406
		(0.43)	(3.67)		(-0.40)	(1.69)		(-0.24)	(0.67)

Source: Jegadeesh and Titman. 1993. "Return to Buying Winners and Selling Losers: Implications for Stock Market Efficiency", *Journal of Finance*

Momentum and Reversal

 Momentum and reversal presented us with the same issue—predictability

• What would you as an investor do knowing that there is likely momentum?

• And Reversal?

A Model of

News-watcher and Momentum Trader*

- Infinite Periods
- 1 (group of) "News-Watcher"
- Multiple "Momentum Traders"
- 1 unit of "stock"
- Assume risk-free rate is 0

* Based on Hong and Stein. 1999. "A Unified Theory of Underreaction, Momentum Trading, and Overreaction in Asset Markets." *Journal of Finance*.

News-Watcher

- News-watcher receives news about the value of stock slowly, until the news is completely known
 - Interpretation?
 - Demand gradually increases with good news
 - Gradually decreases with bad news
- Holds stock forever

Momentum Traders

- Momentum traders' demand increases when stock price goes up
- Stays in market for a fixed number of periods.
 Each period, the oldest momentum trader exits the market and one new trader enters
- Assumption: Each momentum trader's demand depends only on the price movement when they enter the market

Model Logic

Suppose a good news is gradually spreading

- 1. News-watcher gradually push price up
- 2. Entering momentum traders see the price increase and push price up further
- 3. News-watcher stop pushing price up after the good news is fully known. Price stop increasing
- 4. Existing momentum traders still have high demand but new traders have low demands
- 5. As old momentum traders exit the market, price inevitably drops

Model Logic

- 1. News-watcher gradually push price up
- 2. Entering momentum traders see the price increase and push price up further
- 3. News-watcher stop pushing price up after the good news is fully known. Price stop increasing
- 4. Existing momentum traders still have high demand but new traders have low demands
- 5. As old momentum traders exit the market, price inevitably drops

Model Logic

- Price increase signals good news not yet fully incorporated in price. This is the rational part of price increase
- But momentum traders push prices myopically. This part of price increase is irrational so reversal is inevitable
- Model implications consistent with short-term momentum and long-term reversal.

Chan 2003	Months after	News sto	ocks	No-news s	tocks	Difference					
JFE	formation	Average (%)	<i>t</i> -statistic	Average (%)	t-statistic	Average (%)	t-statistic				
	Panel A: Long-short strategy										
	1	0.03	0.20	-1.14	-5.75	1.18	7.01				
	3	0.91	2.44	-1.60	-3.78	2.51	7.37				
Momentum	6	1.70	2.94	-1.58	-2.34	3.28	6.01				
	9	3.12	3.99	-1.09	-1.23	4.21	6.10				
mostiy	12	3.93	4.43	-0.70	-0.69	4.62	5.62				
drivon hv	24	3.42	2.38	-2.33	-1.44	5.75	4.59				
unven by	36	0.97	0.48	-3.63	-1.70	4.60	3.03				
losing stock	Panel B: Winner	vortfolio									
on the news	Formation date	16.60	57.83	16.67	63.70	-0.07	-0.36				
	1	0.00	0.00	-0.24	-1.98	0.24	2.00				
	3	0.32	1.26	-0.12	-0.39	0.43	1.66				
	6	0.42	0.94	0.44	0.92	-0.01	-0.03				
	9	0.99	1.59	1.42	2.24	-0.43	-0.63				
	12	1.32	1.69	2.23	2.90	-0.91	-1.01				
	24	1.84	1.44	4.24	3.25	-2.40	-1.57				
	36	2.28	1.26	6.35	3.35	-4.07	-1.77				
Source: Chan,	Panel C: Loser po	ortfolio									
Wesley S. 2003.	Formation date	-13.89	-83.37	-13.90	-86.73	0.01	0.14				
"Stock price	1	-0.03	-0.28	0.91	7.17	-0.94	-6.83				
reaction to news	3	-0.60	-2.09	1.48	5.01	-2.08	-6.23				
and no-news: drift	6	-1.28	-2.45	2.02	3.68	-3.29	-5.45				
and reversal after	9	-2.13	-2.77	2.52	3.22	-4.64	-5.59				
headlines", Journal	12	-2.60	-2.65	2.93	2.94	-5.53	-5.25				
of Financial	24	-1.58	-0.80	6.57	3.50	-8.15	-4.07				
Economics	36	1.31	0.43	9.98	3.79	-8.67	-3.04				

Excel Portfolio Formation Exercise

- Suppose we use data from 2006-2009
- We will use Excel solver to form a portfolio that maximizes the portfolio Sharpe Ratio between 2006-2007
- We will then calculate the out-of-sample return with data from 2008-2009